Cho hàm số (y = (x^4) + 8(x^2) + m) có giá trị nhỏ nhất trên ([ (1;3) ]) bằng (6.) Tham số thực (m) bằng
Lưu lại
Cho hàm số $y = {x^4} + 8{x^2} + m$ có giá trị nhỏ nhất trên $\left[ {1;3} \right]$ bằng $6.$ Tham số thực $m$ bằng
Hàm số $y = {x^4} + 8{x^2} + m$ liên tục trên $D = \left[ {1;3} \right]$.
$y' = 4{x^3} + 16x = 4x\left( {{x^2} + 4} \right)$, $y' = 0 \Leftrightarrow x = 0 \notin D$.
$y\left( 1 \right) = 9 + m,\,\,\,y\left( 3 \right) = 153 + m$.
Vậy $\mathop {\min }\limits_D y = 9 + m = 6 \Leftrightarrow m = - 3$.
Đáp án D
Câu hỏi nằm trong đề thi:
- Câu 1:
Tiệm cận ngang của đồ thị hàm số $y = {3^x}$ và tiệm cận đứng của đồ thị hàm số $y = {\log _2}x$ lần lượt có phương trình là
- Câu 2:
Cho hàm số $y = f\left( x \right)$ liên tục trên $\mathbb{R}$ có bảng biến thiên như hình bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây ?
- Câu 3:
Hàm số nào dưới đây đồng biến trên $\left( { - \infty ; + \infty } \right)?$
- Câu 4:
Khối lập phương và khối bát diện đều lần lượt là khối đa diện đều loại
- Câu 5:
Nếu khối trụ tròn xoay có bán kính đáy bằng $2a$ và thể tích bằng $36\pi {a^3}\,\left( {0 < a \in \mathbb{R}} \right)$ thì chiều cao bằng
- Câu 6:
Hai hàm số $y = {\left( {x - 1} \right)^{ - 2}}$ và $y = {x^{\dfrac{1}{2}}}$ lần lượt có tập xác định là
- Câu 7:
Cho mặt cầu có bán kính bằng $3a,$ với $0 < a \in \mathbb{R}.$ Diện tích của mặt cầu đã cho bằng
- Câu 8:
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \dfrac{{1 - x}}{{x + 1}}$ trên $\left[ { - 3; - 2} \right]$ lần lượt bằng
- Câu 9:
Cho khối chóp có chiều cao bằng $6a,$ đáy là tam giác vuông cân với cạnh huyền bằng $2a,$ biết $0 < a \in \mathbb{R}.$ Thể tích của khối chóp đã cho bằng
- Câu 10:
Cho $a$ là số thực dương. Phương trình ${2^x} = a$ có nghiệm là
- Câu 11:
Số điểm cực trị của hai hàm số $y = {x^4}$ và $y = {e^x}$ lần lượt bằng
- Câu 12:
Số điểm cực trị của hàm số $f\left( x \right)$ có đạo hàm $f'\left( x \right) = x{\left( {x - 1} \right)^2},\forall \,x \in \mathbb{R}$ là
- Câu 13:
Cho $a$ và $b$ là hai số thực dương thỏa $a \ne 1.$ Giá trị của biểu thức ${\log _a}\left( {8b} \right) - {\log _a}\left( {2b} \right)$ bằng
- Câu 14:
Cho hình hộp chữ nhật có ba kích thước là $2a,4a,4a,$ với $0 < a \in \mathbb{R}.$ Diện tích của mặt cầu ngoại tiếp hình hộp chữ nhật đã cho bằng
- Câu 15:
Tính theo $a$ chiều cao của hình chóp tứ giác đều có các cạnh bằng $2a$ (với $0 < a \in \mathbb{R}$).
- Câu 16:
Cho hàm số $y = f\left( x \right)$ liên tục trên $\left( { - \infty ; + \infty } \right)$ và có bảng biến thiên như hình bên. Số nghiệm thực của phương trình $f\left( x \right) = 1$ bằng
- Câu 17:
Cho hàm số $y = \dfrac{{x - m}}{{x + 1}}$ thỏa $\mathop {\min }\limits_{\left[ {0;1} \right]} y + \mathop {\max }\limits_{\left[ {0;1} \right]} y = 5.$ Tham số thực $m$ thuộc tập nào dưới đây ?
- Câu 18:
Nếu đặt $t = {3^x} > 0$ thì phương trình ${3^{2x - 1}} + {3^{x + 1}} - 12 = 0$ trở thành phương trình
- Câu 19:
Nếu đặt $t = {\log _2}x$ (với $0 < x \in \mathbb{R}$) thì phương trình ${\left( {{{\log }_2}x} \right)^2} + {\log _4}\left( {{x^3}} \right) - 7 = 0$ trở thành phương trình nào dưới đây ?
- Câu 20:
Hàm số $y = \sqrt[3]{{1 + {x^2}}}$ có đạo hàm $y'$ bằng
- Câu 21:
Đạo hàm của hàm số $y = {\log _2}\left( {3 + {x^2}} \right)$ là
- Câu 22:
Cho khối lăng trụ $ABC.A'B'C'$ có thể tích là $V,$ khối chóp $A'.BCC'B'$ có thể tích là ${V_1}.$ Tỉ số $\dfrac{{{V_1}}}{V}$ bằng
- Câu 23:
Tìm diện tích xung quanh của khối nón có bán kính đáy bằng $8a,$ thể tích bằng $128\pi {a^3},$ với $0 < a \in \mathbb{R}.$
- Câu 24:
Đạo hàm của hàm số $y = {2^{\cos x}}$ là
- Câu 25:
Hàm số $y = \sqrt {{x^4} + 1} $ có đạo hàm $y'$ bằng
- Câu 26:
Số tiệm cận đứng và số tiệm cận ngang của đồ thị hàm số $y = \dfrac{{2{x^2} + 2x}}{{{x^2} + 2x + 1}}$ lần lượt là
- Câu 27:
Cho $0 < x \in \mathbb{R}.$ Đạo hàm của hàm số $y = \ln \left( {x\sqrt {{x^2} + 1} } \right)$ là
- Câu 28:
Cho khối lăng trụ đứng $ABC.A'B'C'$ có đáy là tam giác đều, $AB = 6a,$ với $0 < a \in \mathbb{R},$ góc giữa đường thẳng $A'B$ và mặt phẳng $\left( {ABC} \right)$ bằng $45^\circ .$ Thể tích của khối lăng trụ đã cho bằng
- Câu 29:
Đường cong ở hình bên là đồ thị của hàm số $y = a{x^3} + b{x^2} + c;$ với $x$ là biến số thực; $a,b,c$ là ba hằng số thực, $a \ne 0.$ Mệnh đề nào dưới đây đúng ?
- Câu 30:
Cho hai số thực dương $a$ và $b$ thỏa $a \ne 1 \ne {a^2}b.$ Giá trị của biểu thức $2 - \dfrac{3}{{2 + {{\log }_a}b}}$ bằng
- Câu 31:
Cho hàm số $f\left( x \right)$ có đạo hàm$f'\left( x \right)$ liên tục trên $\mathbb{R}$ và có bảng xét dấu như hình bên. Hàm số $f\left( {3 - 2x} \right)$ đồng biến trên khoảng nào dưới đây ?
- Câu 32:
Số giá trị nguyên của tham số $m$ để hàm số $y = {x^3} - m{x^2} - 2mx$ đồng biến trên $\mathbb{R}$ bằng
- Câu 33:
Cho hình chóp $S.ABC$ có đáy là tam giác đều cạnh bằng $4a,$ $SA$ vuông góc với mặt phẳng đáy, $SA = 6a$ với $0 < a \in \mathbb{R}.$ Khoảng cách từ điểm $A$ đến mặt phẳng $\left( {SBC} \right)$ bằng
- Câu 34:
Số tiệm cận đứng và số tiệm cận ngang của đồ thị hàm số $y = \dfrac{{\sqrt {x + 1} - 1}}{{{x^3} - 4x}}$ lần lượt là
- Câu 35:
Cho hàm số $y = {x^4} + 8{x^2} + m$ có giá trị nhỏ nhất trên $\left[ {1;3} \right]$ bằng $6.$ Tham số thực $m$ bằng
- Câu 36:
Tập hợp các tham số thực $m$ để hàm số $y = \dfrac{x}{{x - m}}$ nghịch biến trên $\left( {1; + \infty } \right)$ là
- Câu 37:
Đường cong ở hình bên là đồ thị của hàm số $y = f\left( x \right) = a{x^4} + b{x^2} + c;$ với $x$ là biến số thực; $a,b,c$ là ba hằng số thực, $a \ne 0.$ Gọi $k$ là số nghiệm thực của phương trình $f\left( x \right) = 1.$ Mệnh đề nào dưới đây đúng ?
- Câu 38:
Hàm số $y = {x^3} + m{x^2}$ đạt cực đại tại $x = - 2$ khi và chỉ khi giá trị của tham số thực $m$ bằng
- Câu 39:
Tiệm cận ngang của đồ thị hàm số $y = \sqrt {4{x^2} - 8x + 5} + 2x$ có phương trình là
- Câu 40:
Một công ty thành lập vào đầu năm 2015, tổng số tiền trả lương năm 2015 của công ty là $500$ triệu đồng. Biết rằng từ năm $2016$ trở đi, mỗi năm thì tổng số tiền trả lương của công ty tăng thêm $9\% $ so với năm kế trước. Năm đầu tiên có tổng số tiền trả lương năm đó của công ty lớn hơn 1 tỷ đồng là
- Câu 41:
Cho cấp số cộng $\left( {{u_n}} \right)$ biết ${u_1} = 3,{u_2} = - 1$. Tìm ${u_3}$.
- Câu 42:
Đường cong trong hình vẽ bên là đồ thị hàm số nào dưới đây?
- Câu 43:
Tìm đường tiệm cận ngang của đồ thị hàm số $y = \frac{{2 - 2x}}{{x + 1}}$.
- Câu 44:
Cắt một khối trụ bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng $a$. Tính diện tích xung quanh $S$ của khối trụ đó.
- Câu 45:
Một mặt cầu có đường kính bằng $a$ có diện tích $S$ bằng bao nhiêu?
- Câu 46:
Tìm nghiệm của phương trình ${\log _2}\left( {3x - 2} \right) = 3$.
- Câu 47:
Cho biểu thức $P = {2^x}{.2^y}\left( {x;y \in \mathbb{R}} \right)$. Khẳng định nào sau đây đúng?
- Câu 48:
Cho hình lập phương $ABCD.A'B'C'D'$ có cạnh bằng $a$. Tính thể tích $V$ của khối chóp $D'.ABCD$.
- Câu 49:
Trong khai triển nhị thức ${\left( {2x - 1} \right)^{10}}.$ Tìm hệ số của số hạng chứa ${x^8}.$
- Câu 50:
Cho hình chóp $S.ABC$ có $SA$ vuông góc với đáy $ABC$. Tam giác $ABC$ vuông cân tại $B$ và $SA = a\sqrt 2 ,SB = a\sqrt 5 $. Tính góc giữa $SC$ và mặt phẳng $\left( {ABC} \right)$.
- Câu 51:
Phương trình ${\sin ^2}x + \sqrt 3 \sin x\cos x = 1$có bao nhiêu nghiệm thuộc $\left[ {0;2\pi } \right]?$
- Câu 52:
Gọi $M,m$ lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số $y = x + \sqrt {4 - {x^2}} $. Tính $M - m$.
- Câu 53:
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a\sqrt 2 .$ Biết $SA$ vuông góc với đáy và $SC = a\sqrt 5 .$ Tính thể tích $V$ của khối chóp đã cho.
- Câu 54:
Cho hàm số $y = f\left( x \right)$ có đồ thị như hình vẽ. Tìm khoảng đồng biến của hàm số.
- Câu 55:
Cho hai số thực $a,b$ với $a > 0,a \ne 1,b \ne 0$. Khẳng định nào sau đây sai?
- Câu 56:
Cho hàm số $f\left( x \right)$ có đạo hàm $f'\left( x \right) = {x^2}{\left( {x + 1} \right)^3}\left( {x + 2} \right)$. Hàm số $f\left( x \right)$ có mấy điểm cực trị?
- Câu 57:
Cho ${\log _a}b = 2;{\log _a}c = 3.$ Tính giá trị của biểu thức $P = {\log _a}\left( {a{b^3}{c^5}} \right)$
- Câu 58:
Hàm số nào sau đây nghịch biến trên $\mathbb{R}$?
- Câu 59:
Gọi $M,m$ lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số $y = x + \frac{1}{x}$ trên $\left[ {\frac{1}{3};3} \right]$. Tính $3M + 2m$.
- Câu 60:
Gọi ${x_1},{x_2}$ là nghiệm của phương trình ${7^{{x^2} - 5x + 9}} = 343$. Tính ${x_1} + {x_2}$.
- Câu 61:
Thiết diện qua trục của hình nón tròn xoay là một tam giác đều cạnh $2a.$ Tính thể tích $V$ của khối nón đó.
- Câu 62:
Cho hàm số $y = a{x^4} + b{x^2} + c$ có đồ thị như hình vẽ. Mệnh đề nào sau đây đúng?
- Câu 63:
Cho hình chóp tứ giác đều $S.ABCD$ có tất cả các cạnh đều bằng $2a.$ Tính bán kính $R$ của mặt cầu ngoại tiếp hình chóp đã cho.
- Câu 64:
Cho lăng trụ tam giác đều, có độ dài tất cả các cạnh bằng $2$. Tính thể tích $V$ của khối lăng trụ đó.
- Câu 65:
Viết phương trình tiếp tuyến của đồ thị hàm số $y = {x^3} - 3{x^2} + 1$ biết nó song song với đường thẳng $y = 9x + 6.$
- Câu 66:
Cho lăng trụ $ABC.A'B'C'$ có đáy là tam giác vuông tại $A$, $AB = a,AC = a\sqrt 2 $. Biết góc giữa mặt phẳng $\left( {A'BC} \right)$ và mặt phẳng $\left( {ABC} \right)$ bằng ${60^0}$ và hình chiếu vuông góc của $A'$ trên $\left( {ABC} \right)$ là trung điểm $H$ của $AB$. Tính thể tích $V$ của khối lăng trụ đó.
- Câu 67:
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thoi cạnh $a,\widehat {ABC} = 60^\circ ,SA = SB = SC = a\sqrt 2 .$ Tính thể tích $V$ của khối chóp đã cho.
- Câu 68:
Có bao nhiêu số nguyên dương $m$ sao cho đường thẳng $y = x + m$ cắt đồ thị hàm số $y = \frac{{2x - 1}}{{x + 1}}$ tại hai điểm phân biệt $A,B$ và $AB \le 4$?
- Câu 69:
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác cân tại $A,$ biết $AB = a;SA = SB = a$ và mặt phẳng $\left( {SBC} \right)$ vuông góc với mặt phẳng $\left( {ABC} \right)$. Tính $SC$ biết bán kính mặt cầu ngoại tiếp hình chóp $S.ABC$ bằng $a.$
- Câu 70:
Cho hàm số $f\left( x \right) = {x^3} - \left( {2m - 1} \right){x^2} + \left( {2 - m} \right)x + 2.$ Tìm tất cá các giá trị thực của tham số $m$ để hàm số $y = f\left( {\left| x \right|} \right)$ có 5 cực trị.
- Câu 71:
Cho hình trụ có bán kính đáy bằng $a\sqrt 2 $. Cắt hình trụ bởi một mặt phẳng, song song với trụ của hình trụ và cách trục của hình trụ một khoảng bằng $\frac{a}{2}$ ta được thiết diện là một hình vuông. Tính thể tích $V$ của khối trụ đã cho.
- Câu 72:
Cho tập hợp $X$ gồm các số tự nhiên có 6 chữ số khác nhau có dạng $\overline {abcdef} $ . Từ tập $X$ lấy ngẫu nhiên một số. Tính xác suất để số lấy ra là số lẻ và thõa mãn $a < b < c < d < e < f.$
- Câu 73:
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông tâm $O$ cạnh $a$. $SO$ vuông góc với mặt phẳng $\left( {ABCD} \right)$ và $SO = a\sqrt 2 $. Tính khoảng cách $d$ giữa $SC$ và $AB$.
- Câu 74:
Tìm tất cả các giá trị khác nhau của tham số $m$ để hàm số $y = \frac{{{5^{ - x}} + 2}}{{{5^{ - x}} - m}}$ đồng biến trên $\left( { - \infty ;0} \right)$.
- Câu 75:
Tìm tất cả các giá trị của tham số $m$ để phương trình $\left( {m + 3} \right){9^x} + \left( {2m - 1} \right){3^x} + m + 1 = 0$ có hai nghiệm trái dấu.
- Câu 76:
Tìm tất cá các giá trị thực của tham số $m$ để hàm số $y = \frac{1}{3}{x^3} - 2m{x^2} + 4x - 5$ đồng biến trên $\mathbb{R}$.
- Câu 77:
Tìm tất cả các giá trị của tham số $m$ để phương trình ${x^3} - 3{x^2} + 2 - m = 0$ có ba nghiệm phân biệt.
- Câu 78:
Đặt $a = {\log _7}11,b = {\log _2}7.$ Hãy biểu diễn ${\log _{\sqrt[3]{7}}}\frac{{121}}{8}$ theo $a$ và $b.$
- Câu 79:
Tìm tất cả các giá trị của tham số $m$ để phương trình $\log _2^2x + {\log _2}x - m = 0$ có nghiệm $x \in \left( {0;1} \right)$.
- Câu 80:
Cho hàm số $y = f\left( x \right)$ có bảng xét dấu của đạo hàm như sau:
Hàm số $y = 3f\left( {x + 3} \right) - {x^3} + 12x$ nghịch biến trên khoảng nào dưới đây?
- Câu 81:
Giả sử hàm số $y = f\left( x \right)$ có đạo hàm là hàm số $y = f'\left( x \right)$ có đồ thị được cho như hình vẽ dưới đây và $f\left( 0 \right) + f\left( 1 \right) - 2f\left( 2 \right) = f\left( 4 \right) - f\left( 3 \right)$. Tìm giá trị nhỏ nhất $m$ của hàm số $y = f\left( x \right)$ trên $\left[ {0;4} \right]$.
- Câu 82:
Cho hai vị trí A, B cách nhau $615m$ , cùng nằm về một phía bờ song như hình vẽ. Khoảng cách từ A và từ B đến bờ song lần lượt là $118m$ và $487m$. Một người đi từ A đến bờ song lấy nước mang về B. Tính đoạn đường ngắn nhất mà người ấy có thể đi.
- Câu 83:
Xét các số thực dương $x,y$ thỏa mãn ${\log _{\sqrt 3 }}\frac{{x + y}}{{{x^2} + {y^2} + xy + 2}} = x\left( {x - 3} \right) + y\left( {y - 3} \right) + xy$. Tìm giá trị lớn nhất của biểu thức $P = \frac{{3x + 2y + 1}}{{x + y + 6}}$ .
- Câu 84:
Cho lăng trụ $ABC.A'B'C'$ có thể tích bằng $2.$ Gọi $M,N$ lần lượt là hai điểm nằm trên cạnh $AA',BB'$ sao cho $M$ là trung điểm của $AA'$ và $BN = \frac{1}{2}NB'.$ Đường thẳng $CM$ cắt đường thẳng $C'A'$ tại $P,$ đường thẳng $CN$ cắt đường thẳng $C'B'$ tại $Q.$ Tính thể tích $V$ của khối đa diện $A'MPB'NQ.$
- Câu 85:
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $SA$ vuông góc với mặt phẳng$\left( {ABC} \right)$và $AB = 2,AC = 4,SA = \sqrt 5 $. Mặt cầu đi qua các đỉnh của hình chóp $S.ABC$ có bán kính là
- Câu 86:
Cho khối nón có bán kính đáy $r = \sqrt 3 $ và chiều cao $h = 4$. Tính thể tích $V$ của khối nón đã cho.
- Câu 87:
Tìm tập xác định $D$ của hàm số $y = {\left( {{x^2} - 3x - 4} \right)^{\sqrt {2 - \sqrt 3 } }}$.
- Câu 88:
Cho $a$ là số thực dương khác $5$. Tính $I = {\log _{\frac{a}{5}}}\left( {\dfrac{{{a^3}}}{{125}}} \right)$.
- Câu 89:
Cho $a > 0$, $b > 0$, giá trị của biểu thức $T = 2{\left( {a + b} \right)^{ - 1}}.{\left( {ab} \right)^{\frac{1}{2}}}.{\left[ {1 + \dfrac{1}{4}{{\left( {\sqrt {\dfrac{a}{b}} - \sqrt {\dfrac{b}{a}} } \right)}^2}} \right]^{\frac{1}{2}}}$ bằng
- Câu 90:
Cho $a$, $b$, $c$ dương và khác $1$. Các hàm số $y = {\log _a}x$, $y = {\log _b}x$, $y = {\log _c}x$ có đồ thị như hình vẽ
Khẳng định nào dưới đây đúng?