Cho hình chóp S.ABC có đáy là tam giác vuông cân tại A, cạnh SA vuông góc với mặt phẳng (ABC), BC = a, SA = AB. Thể tích của khối chóp đã cho bằng

Lưu lại

Cho hình chóp S.ABC có đáy là tam giác vuông cân tại A, cạnh SA vuông góc với mặt phẳng (ABC), BC = a, SA = AB. Thể tích của khối chóp đã cho bằng

Đáp án: A

$\Delta ABC$ vuông cân tại $A$ có $BC = a$

$\begin{array}{l} \Rightarrow AB = AC = \dfrac{a}{{\sqrt 2 }}.\\ \Rightarrow SA = AB = \dfrac{a}{{\sqrt 2 }}.\\ \Rightarrow {V_{SABC}} = \dfrac{1}{3}SA.{S_{ABC}} = \dfrac{1}{3}.SA.\dfrac{1}{2}AB.AC\\ = \dfrac{1}{6}.\dfrac{a}{{\sqrt 2 }}.\dfrac{a}{{\sqrt 2 }}.\dfrac{a}{{\sqrt 2 }} = \dfrac{{{a^3}}}{{12\sqrt 2 }} = \dfrac{{{a^3}\sqrt 2 }}{{24}}.\end{array}$

Chọn  A.

$\Delta ABC$ vuông cân tại $A$ có $BC = a$

$\begin{array}{l} \Rightarrow AB = AC = \dfrac{a}{{\sqrt 2 }}.\\ \Rightarrow SA = AB = \dfrac{a}{{\sqrt 2 }}.\\ \Rightarrow {V_{SABC}} = \dfrac{1}{3}SA.{S_{ABC}} = \dfrac{1}{3}.SA.\dfrac{1}{2}AB.AC\\ = \dfrac{1}{6}.\dfrac{a}{{\sqrt 2 }}.\dfrac{a}{{\sqrt 2 }}.\dfrac{a}{{\sqrt 2 }} = \dfrac{{{a^3}}}{{12\sqrt 2 }} = \dfrac{{{a^3}\sqrt 2 }}{{24}}.\end{array}$

Chọn  A.

TOP THÀNH VIÊN NỔI BẬT

    Xem top 100 thành viên