Cho khối chóp (S.ABC)có (SA bot ( (ABC) ),) tam giác (ABC) vuông tại (B), (AB = a,,AC = asqrt 3 .) Tính thể tích khối chóp (S.ABC) biết rằng (SB = asqrt 5 )
Lưu lại
Cho khối chóp $S.ABC$có $SA \bot \left( {ABC} \right),$ tam giác $ABC$ vuông tại $B$, $AB = a,\,AC = a\sqrt 3 .$ Tính thể tích khối chóp $S.ABC$ biết rằng $SB = a\sqrt 5 $
Ta có tam giác ABC vuông tại B
Áp dụng định lý Py – ta – go ta có:
$BC = \sqrt {A{C^2} - A{B^2}} = \sqrt {3{a^2} - {a^2}} = a\sqrt 2 $
+ $SA = \sqrt {S{B^2} - A{B^2}} = \sqrt {5{a^2} - {a^2}} = 2a$
Khi đó ta có:
${V_{S.ABC}} = \dfrac{1}{3}SA.{S_{ABC}} = \dfrac{1}{3}.2a.\dfrac{1}{2}.a\sqrt 2 .a $$\,= \dfrac{{{a^3}\sqrt 2 }}{3}$
Chọn đáp án B
Câu hỏi nằm trong đề thi:
- Câu 1:
Cho hàm số $y = \sqrt {{x^2} - 6x + 5} $. Mệnh đề nào sau đây là đúng ?
- Câu 2:
Cho hàm số $y = {x^4} + 4{x^2}$ có đồ thị (C). Tìm số giao điểm của đồ thị (C) và trục hoành.
- Câu 3:
Đồ thị sau đây là của hàm số $y = {x^4} - 3{x^2} - 3$. Với giá trị nào của m thì phương trình ${x^4} - 3{x^2} + m = 0$ có ba nghiệm phân biệt ?
- Câu 4:
Cho hàm số y = f(x) có bảng biến thiên như sau.
Hàm số đồng biến trên khoảng nào ?
- Câu 5:
Hai khối chóp lần lượt có diện tích đáy, chiều cao và thể tích là ${B_1},{h_1},{V_1}$ và ${B_2},{h_2},{V_2}$. Biết ${B_1} = {B_2}$ và ${h_1} = 2{h_2}$. Khi đó $\dfrac{{{V_1}}}{{{V_2}}}$ bằng:
- Câu 6:
Khối chóp tam giác có thể tích $\dfrac{{2{a^3}}}{3}$ và chiều cao $a\sqrt 3 $ thì diện tích đáy của khối chóp bằng:
- Câu 7:
Khối hộp chữ nhât. ABCD.A’B’C’D’ có AB = a, AC = 2a và AA’ = 2a. Thể tích khối hộp là:
- Câu 8:
Biết đường thẳng $y = - {9 \over 4}x - {1 \over {24}}$ cắt đồ thị hàm số $y = {{{x^3}} \over 3} + {{{x^2}} \over 2} - 2x$ tại một điểm duy nhất, ký hiệu (x0 ; y0) là tọa độ điểm đó. Tìm y0.
- Câu 9:
Cho hàm số y = f(x) xác định , liên tục trên R và có bảng biến thiên như dưới đây.
Đồ thị hàm số y = f(x) cắt đường thẳng y = - 2018 tại bao nhiêu điểm ?
- Câu 10:
Có tất cả bao nhiêu giá trị nguyên của m để phương trình ${x^3} - 6{x^2} + m = 0$ có 3 nghiệm phân biệt ?
- Câu 11:
Trên đồ thị hàm số $y = {{2x - 1} \over {x + 1}}$ có bao nhiêu điểm có tọa độ nguyên ?
- Câu 12:
Cho khối chóp $S.ABC$có $SA \bot \left( {ABC} \right),$ tam giác $ABC$ vuông tại $B$, $AB = a,\,AC = a\sqrt 3 .$ Tính thể tích khối chóp $S.ABC$ biết rằng $SB = a\sqrt 5 $
- Câu 13:
Cho hình chóp SA BC có đáy ABC là tam giác vuông cân tại B với AC = a biết SA vuông góc với đáy ABC và SB hợp với đáy một góc 60o. Tính thể tích hình chóp
- Câu 14:
Cho khối chóp $S.ABCD$có đáy là hình vuông cạnh $2a$. Gọi $H$ là trung điểm cạnh $AB$ biết $SH \bot \left( {ABCD} \right)$ . Tính thể tích khối chóp biết tam giác $SAB$ đều
- Câu 15:
Cho hàm số y = f(x) xác định trên R\{1} và có bảng biến thiên như sau:
Mệnh đề nào sau đây đúng ?
- Câu 16:
Cho hàm số có bảng biến thiên như sau:
Mệnh đề nào sau đây là đúng ?
- Câu 17:
Đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số $y = {{2x - 1} \over {x + 1}}$ là:
- Câu 18:
Số giao điểm của đồ thị hai hàm số $y = {x^2} - 3x - 1,\,\,y = {x^3} - 1$ là
- Câu 19:
Cho hàm số y = f(x) có $\mathop {\lim }\limits_{x \to - \infty } f(x) = - 2,\,\,\mathop {\lim }\limits_{x \to + \infty } f(x) = 2$. Khẳng định nào sau đây đúng ?
- Câu 20:
Đồ thị sau là của hàm số nào ?
- Câu 21:
Giá trị lớn nhất củ hàm số $f(x) = {x^3} - 2{x^2} + x - 2$ trên đoạn [0 ; 2] bằng:
- Câu 22:
Cho hình chóp SABC có đáy ABC vuông cân tại a với AB = AC = a biết tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với (ABC) ,mặt phẳng (SAC) hợp với (ABC) một góc 45o. Tính thể tích của SABC.
- Câu 23:
Hình chóp đều S.ABCD có cạnh đáy bằng $2a$ và cạnh bên bằng $3a$. Thể tích hình chóp S.ABCD ?
- Câu 24:
Hình chóp đều S.ABC có cạnh đáy bằng $a$ và cạnh bên tạo với đáy một góc bằng ${30^0}$. Thể tích của hình chóp S.ABC là ?
- Câu 25:
Xét hình chóp S.ABC với M, N, P lần lượt là các điểm trên SA, SB, SC sao cho $\dfrac{{SM}}{{MA}} = \dfrac{{SN}}{{NB}} = \dfrac{{SP}}{{PC}} = \dfrac{1}{2}$. Tỉ số thể tích của khối tứ diện SMNP với SABC là:
- Câu 26:
Cho khối lăng trụ đứng ABC.A’B’C’,đáy ABC là tam giác vuông tại B,AB=BC=2a,AA’=$a\sqrt 3 $.Tính thể tích khối lăng trụ ABC.A’B’C’.
- Câu 27:
Nếu ba kích thước của một khối chữ nhật tăng lên 4 lần thì thể tích của nó tăng lên:
- Câu 28:
Cho hàm số $y = {x^3} - 3x + 1$. Tìm khẳng định đúng.
- Câu 29:
Đường thẳng y = 4x – 1 và đồ thị hàm số $y = {x^3} - 3{x^2} - 1$ có bao nhiêu điểm chung ?
- Câu 30:
Hàm số $y = {{2x + 1} \over {x - 1}}$ có bao nhiêu điểm cực trị ?
- Câu 31:
Cho hàm số $y = {x^4} - 3{x^2} + 2$. Chọn khảng định đúng trong các khẳng định sau:
- Câu 32:
Tâm đối xứng I của đồ thị hàm số $y = - {{2x - 1} \over {x + 1}}$ là:
- Câu 33:
Thể tích $V$ của khối lập phương $ABCD.A'B'C'D'$, biết $AB = 3a$ là:
- Câu 34:
Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a,$\widehat {BCD} = {120^0}$ và $AA' = \dfrac{{7a}}{2}$. Hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) trùng với giao điểm của AC và BD. Tính theo a thể tích khối hộp ABCD.A’B’C’D’.
- Câu 35:
Thể tích của khối hộp chữ nhật ABCDA’B’C’D’ có AB = a; BC = b; AA’ = c là:
- Câu 36:
Hình nào trong các hình sau không phải là hình đa diện?
- Câu 37:
Đồ thị các hàm số $y = {{4x + 4} \over {x - 1}}$ và $y = {x^2} - 1$ cắt nhau tại bao nhiêu điểm ?
- Câu 38:
Cho hàm số $y = {1 \over 3}{x^3} + 2{x^2} + (m + 1)x + 5$. Tìm tất cả các giá trị của tham số m để hàm số đồng biến trên R.
- Câu 39:
Cho hàm số y = f(x) xác định và có đạo hàm $f'(x) = 2{x^2}$ trên R. Chọn kết luận đúng:
- Câu 40:
Chọn khẳng định sai:
- Câu 41:
Cho hình hộp chữ nhật $ABCD.A'B'C'D'$ có $AB = a,AD = AA' = 2a$ . Diện tích của mặt cầu ngoại tiếp hình hộp chữ nhật đã cho bằng
- Câu 42:
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật với $Ab = 3a,\,BC = a$ , cạnh bên $SD = 2a$ và $SD$ vuông góc với mặt phẳng đáy. Thể tích khối chóp $S.ABCD$ bằng
- Câu 43:
Trong không gian $Oxyz$, cho $\overrightarrow a \left( { - 3;4;\,0} \right)$ và $\overrightarrow b \,\left( {5;\,0;\,12} \right)$. Côsin của góc giữa $\overrightarrow {a\,} $ và $\overrightarrow b $ bằng
- Câu 44:
Giả sử $a,\,b$ là các số thực dương bất kỳ. Biểu thức $\ln \frac{a}{{{b^2}}}$ bằng
- Câu 45:
Trong không gian $Oxyz,$ cho $E\left( { - 1;0;2} \right)$ và $F\left( {2;1; - 5} \right)$. Phương trình đường thẳng ${\rm{EF}}$ là
- Câu 46:
Đường cong ở hình bên là đồ thị của hàm số nào dưới đây ?
- Câu 47:
Trong không gian $Oxyz$ , mặt phẳng $\left( P \right)$ đi qua điểm $M\left( {3; - 1;4} \right)$ đồng thời vuông góc với giá của vectơ $\overrightarrow a \left( {1; - 1;2} \right)$ có phương trình là
- Câu 48:
Cho hàm số $y = f\left( x \right)$ liên tục trên $\left[ { - 3;3} \right]$ và có bảng xét dấu đạo hàm như hình bên. Mệnh đề nào sau đây sai về hàm số đó?
- Câu 49:
Cho hàm số $y = f\left( x \right)$ có đồ thị như hình vẽ bên. Mệnh đề nào sau đây đúng về hàm số đó?
- Câu 50:
Tất cả các nguyên hàm của hàm số $f\left( x \right) = {3^{ - x}}$ là:
- Câu 51:
Phương trình $\log \,\left( {x + 1} \right) = 2$ có nghiệm là
- Câu 52:
Cho $k,\,n\,\left( {k < n} \right)$ là các số nguyên dương bất kì. Mệnh đề nào sau đây đúng?
- Câu 53:
Cho các số phức $z = - 1 + 2i,{\rm{w}} = 2 - i.$ Điểm nào trong hình bên biểu diễn số phức $z + {\rm{w}}?$
- Câu 54:
Trong không gian Oxyz, cho hai mặt phẳng $\left( P \right):x - 3y + 2z - 1 = 0,\,\,\left( Q \right):x - z + 2 = 0.$ Mặt phẳng $\left( \alpha \right)$ vuông góc với cả (P) và (Q) đồng thời cắt trục Ox tại điểm có hoành độ bằng 3. Phương trình của $\left( \alpha \right)$ là:
- Câu 55:
Cho số phức z thỏa mãn ${\left( {1 - \sqrt 3 i} \right)^2}z = 3 - 4i.$ Môđun của z bằng:
- Câu 56:
Cho hình trụ tròn xoay có độ dài đường sinh bằng đường kính đáy và thể tích của khối trụ bằng $16\pi $ . Diện tích toàn phần của khối trụ đã cho bằng
- Câu 57:
Biết rằng phương trình $\log _2^2x - 7{\log _2}x + 9 = 0$ có hai nghiệm ${x_1},{x_2}.$ Giá trị ${x_1}{x_2}$ bằng
- Câu 58:
Đạo hàm của hàm số $f\left( x \right) = \frac{{{3^x} - 1}}{{{3^x} + 1}}.$ là:
- Câu 59:
Cho $f(x) = {x^4} - 5{x^2} + 4$ . Gọi $S$ là diện tích của hình phẳng giới hạn bởi đồ thị hàm số $y = f\left( x \right)$ và trục hoành. Mệnh đề nào sau đây sai?
- Câu 60:
Cho hàm số $y = f\left( x \right)$ có đạo hàm $f'\left( x \right) = {x^2}\left( {{x^2} - 1} \right),\,\forall \,x \in \mathbb{R}.$ Hàm số $y = 2f\left( { - x} \right)$ đồng biến trên khoảng
- Câu 61:
Biết rằng $\alpha ;\beta $ là các số thực thỏa mãn ${2^\beta }\left( {{2^\alpha } + {2^\beta }} \right) = 8\left( {{2^{ - \alpha }} + {2^{ - \beta }}} \right).$ Giá trị của $\alpha + 2\beta $ bằng
- Câu 62:
Cho hình lăng trụ tam giác đều $ABC.A'B'C'$ có $AB = a$ , góc giữa đường thẳng $A'C$ và mặt phẳng $\left( {ABC} \right)$ bằng ${45^0}$ . Thể tích của khối lăng trụ $ABC.A'B'C'$ bằng
- Câu 63:
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như hình vẽ bên. Hàm số $y = f\left( {2x} \right)$ đạt cực đại tại
- Câu 64:
Cho hình nón tròn xoay có bán kính đáy bằng $3$ và diện tích xung quanh bằng $6\sqrt 3 \pi $ . Góc ở đỉnh của hình nón đã cho bằng
- Câu 65:
Gọi ${x_1},\,{x_2}$ là các nghiệm phức của phương trình ${z^2} + 4z + 7 = 0$ . Số phức ${z_1}\overline {{z_2}} + \overline {{z_1}} {z_2}$ bằng
- Câu 66:
Cho hình lập phương $ABCD.A'B'C'D'$ có $I,J$ tương ứng là trung điểm của $BC$ và $BB'$ . Góc giữa hai đường thẳng $AC$ và $IJ$ bằng
- Câu 67:
Giải bóng truyền quốc tế VTV Cup có $8$ đội tham gia, trong đó có hai đội Việt Nam. Ban tổ chức bốc thăm ngẫu nhiên để chia thành hai bảng đấu, mỗi bảng 4 đội. Xác suất để hai đội của Việt Nam nằm trong hai bảng khác nhau bằng
- Câu 68:
Cho hình lăng trụ đứng $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông tại $A$ . Gọi $E$ là trung điểm của $AB$. Cho biết $AB = 2a,\,BC = \sqrt {13} ,\,CC' = 4a.$ Khoảng cách giữa hai đường thẳng $A'B$ và $CE$ bằng
- Câu 69:
Cho hàm số $y = f\left( x \right)$ có đồ thị như hình vẽ bên. Có bao nhiêu số nguyên $m$ để phương trình $f\left( {{x^3} - 3x} \right) = m$ có $6$ nghiệm phân biệt thuộc đoạn $\left[ { - 1;2} \right]?$
- Câu 70:
Có bao nhiêu số phức $z$ thỏa mãn ${\left| {z - 1} \right|^2} + \left| {z - \overline z } \right|i + \left( {z + \overline z } \right){i^{2019}} = 1\,\,?$
- Câu 71:
Cho $f\left( x \right)$ mà hàm số $y = f'\left( x \right)$ có bảng biến thiên như hình bên. Tất cả các giá trị của tham số $m$ để bất phương trình $m + {x^2} < f\left( x \right) + \frac{1}{3}{x^3}$ nghiệm đúng với mọi $x \in \left( {0;3} \right)$ là
- Câu 72:
Trong không gian $Oxyz$ cho các điểm $M\left( {2;1;4} \right),\,N\left( {5;0;0} \right),\,P\left( {1; - 3;1} \right).$ Gọi $I\left( {a;b;c} \right)$ là tâm của mặt cầu tiếp xúc với mặt phẳng $\left( {Oyz} \right)$ đồng thời đi qua các điểm $M,N,P.$ Tìm $c$ biết rằng $a + b + c < 5.$
- Câu 73:
Biết rằng $\int\limits_0^1 {\frac{{dx}}{{3x + 5\sqrt {3x + 1} + 7}} = a\ln 2 + b\ln 3 + c\ln 5} $ với $a,b,c$ là các số hữu tỉ. Giá trị của $a + b + c$ bằng
- Câu 74:
Trong không gian $Oxyz,$ cho đường thẳng $d:\,\frac{{x + 1}}{2} = \frac{y}{1} = \frac{{z - 2}}{{ - 1}}$ và hai điểm $A\left( { - 1;3;1} \right),\,B\left( {0;2; - 1} \right).$ Gọi $C\left( {m;n;p} \right)$ là điểm thuộc $d$ sao cho diện tích của tam giác $ABC$ bằng $2\sqrt 2 .$ Giá trị của tổng $m + n + p$ bằng
- Câu 75:
Bất phương trình $\left( {{x^3} - 9x} \right)\ln \left( {x + 5} \right) \le 0$ có bao nhiêu nghiệm nguyên?
- Câu 76:
Cho hàm số $f\left( x \right)$ thỏa mãn $f\left( x \right) + f'\left( x \right) = {e^{ - x}},\,\forall \,x \in \mathbb{R}$ và $f\left( 0 \right) = 2.$ Tất cả các nguyên hàm của $f\left( x \right){e^{2x}}$ là
- Câu 77:
Cho hàm số $f\left( x \right)$ có đồ thị hàm số $y = f'\left( x \right)$ được cho như hình vẽ bên. Hàm số$y = \left| {f\left( x \right) + \frac{1}{2}{x^2} - f\left( 0 \right)} \right|$ có nhiều nhất bao nhiêu điểm cực trị trong khoảng $\left( { - 2;3} \right)$
- Câu 78:
Cho hình chóp tứ giác đều $S.ABCD$ có $SA = \sqrt {11} a,$ côsin của góc hợp bởi hai mặt phẳng $\left( {SBC} \right)$ và $\left( {SCD} \right)$ bằng $\frac{1}{{10}}$. Thể tích của khối chóp $S.ABCD$ bằng
- Câu 79:
Chuẩn bị cho đêm hội diễn văn nghệ chào đón năm mới, bạn An đã làm một chiếc mũ “cách điệu” cho Ông già Noel có hình dáng một khối tròn xoay. Mặt cắt qua trục của chiếc mũ như hình vẽ bên. Biết rằng $OO' = 5\,cm,\,\,OA = 10\,cm,\,OB = \,20\,cm,$ đường cong $AB$ là một phần của một parabol có đỉnh là điểm $A.$ Thể tích của chiếc mũ bằng
- Câu 80:
Cho hàm số $y = f\left( x \right)$ có đồ thị như hình bên. Có bao nhiêu số nguyên $m$ để phương trình $\frac{1}{3}f\left( {\frac{x}{2} + 1} \right) + x = m$ có nghiệm thuộc đoạn $\left[ { - 2;\,2} \right]?$
- Câu 81:
Trong không gian $Oxyz,$ cho ba đường thẳng $d:\,\,\frac{x}{1} = \frac{y}{1} = \frac{{z + 1}}{{ - 2}};\,\,{\Delta _1}:\,\frac{{x - 3}}{2} = \frac{y}{1} = \frac{{z - 1}}{1};\,$ ${\Delta _2}:\,\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{z}{1}.$ Đường thẳng $\Delta $ vuông góc với $d$ đồng thời cắt ${\Delta _1},\,{\Delta _2}$ tương ứng tại$H,\,K$ sao cho độ dài $HK$ nhỏ nhất. Biết rằng $\Delta $ có một vecto chỉ phương $\overrightarrow u = \left( {h;\,k;\,1} \right).$ Giá trị của $h - k$ bằng:
- Câu 82:
Trong không gian $Oxyz,$ cho $\overrightarrow a = \left( {1; - 1;0} \right)$ và hai điểm $A\left( { - 4;\,7;\,3} \right),\,B\left( {4;\,4;\,5} \right).$ Giả sử $M,\,N$ là hai điểm thay đổi trong mặt phẳng $\left( {Oxy} \right)$ sao cho $\overrightarrow {MN} $ cùng hướng với $\overrightarrow a $ và $MN = 5\sqrt 2 .$ Giá trị lớn nhất của$\left| {AM - BN} \right|$ bằng:
- Câu 83:
Cho hàm số $y = \dfrac{{2x - 1}}{{2x - 2}}$ có đồ thị $\left( C \right)$. Gọi $M\left( {{x_0};{y_0}} \right)$ (với ${x_0} > 1$) là điểm thuộc $\left( C \right)$, biết tiếp tuyến của $\left( C \right)$ tại M cắt tiệm cận đứng và tiệm cận ngang lần lượt tại A và B sao cho ${S_{\Delta OIB}} = 8{S_{\Delta OIA}}$ (trong đó O là gốc tọa độ, I là giao điểm hai tiệm cận). Giá trị của $S = {x_0} + 4{y_0}$ bằng
- Câu 84:
Cho hàm số $f\left( x \right)$ dương thỏa mãn $f\left( 0 \right) = e$ và ${x^2}f'\left( x \right) = f\left( x \right) + f'\left( x \right),\,\forall x \ne \pm 1$. Giá trị $f\left( {\dfrac{1}{2}} \right)$ là:
- Câu 85:
Cho khối lăng trụ tam giác đều $ABC.A'B'C'$ có chiều cao là a và $AB' \bot BC'$. Thể tích lăng trụ là
- Câu 86:
Cho hàm số $f\left( x \right)$ có đạo hàm liên tục trên $\mathbb{R}$ và hàm $y = f'\left( x \right)$ có đồ thị như hình vẽ. Xét hàm số $g\left( x \right) = f\left( {{x^2} - 5} \right)$. Khẳng định nào dưới đây khẳng định đúng?
- Câu 87:
Cho khối lăng trụ tứ giác đều $ABCD.A'B'C'D'$ có khoảng cách giữa AB và A’D bằng 2, đường chéo của mặt bên bằng 5. Biết $A'A > AD$. Thể tích lăng trụ là
- Câu 88:
Một vật rơi tự do theo phương trình $s = \frac{1}{2}g{t^2},$ trong đó $g \approx 9,8m/{s^2}$ là gia tốc trọng trường. Giá trị gần đúng của vận tốc tức thời của chuyển động tại thời điểm $t = 4s$ là
- Câu 89:
Cho hàm số $y = f\left( x \right)$ có đạo hàm trên $\mathbb{R}$và có bảng biến thiên như hình bên. Khẳng định nào sau đây là đúng?
- Câu 90:
Trong không gian tọa độ Oxyz, mặt phẳng chứa trục Oz và đi qua điểm $I\left( {1;2;3} \right)$có phương trình là