Hàm số nào sau đây luôn đồng biến trên từng khoảng xác định của nó?

Lưu lại

Hàm số nào sau đây luôn đồng biến trên từng khoảng xác định của nó?

Đáp án: C

Đáp án A:

$\begin{array}{l}y' = \dfrac{{3\left( {5x + 7} \right) - 5\left( {3x + 10} \right)}}{{{{\left( {5x + 7} \right)}^2}}}\\ =  - \dfrac{{29}}{{{{\left( {5x + 7} \right)}^2}}} < 0\left( L \right)\end{array}$

Đáp án B:

$\begin{array}{l}y' = \dfrac{{ - 1\left( {5x - 3} \right) - 5\left( { - x + 1} \right)}}{{{{\left( {5x - 3} \right)}^2}}}\\ =  - \dfrac{2}{{{{\left( {5x - 3} \right)}^2}}} < 0\left( L \right)\end{array}$

Đáp án C:

$\begin{array}{l}y' = \dfrac{{ - 1\left( {x + 3} \right) - \left( { - x - 8} \right)}}{{{{\left( {x + 3} \right)}^2}}}\\ = \dfrac{5}{{{{\left( {x + 3} \right)}^2}}} > 0\left( {TM} \right)\end{array}$

Đáp án D:

$\begin{array}{l}y' = \dfrac{{3\left( {x + 1} \right) - \left( {3x + 5} \right)}}{{{{\left( {x + 1} \right)}^2}}}\\ =  - \dfrac{2}{{{{\left( {x + 1} \right)}^2}}} < 0\left( L \right)\end{array}$

Chọn C

TOP THÀNH VIÊN NỔI BẬT

    Xem top 100 thành viên