Trong không gian với hệ tọa độ Oxyz, cho (A( (4;0;2) ),B( (0;2;0) )), (M) là điểm thỏa mãn (overarrow (MA) + overarrow (MB) = overarrow 0 ), tọa độ của điểm (M) là:
Lưu lại
Trong không gian với hệ tọa độ Oxyz, cho $A\left( {4;0;2} \right),B\left( {0;2;0} \right)$, $M$ là điểm thỏa mãn $\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 $, tọa độ của điểm $M$ là:
$\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \Leftrightarrow M$ là trung điểm của AB $ \Leftrightarrow $$M\left( {2;1;1} \right)$.
Chọn: D
Câu hỏi nằm trong đề thi:
- Câu 1:
Trong không gian với hệ tọa độ Oxyz, phương trình nào sau đây là phương trình của một mặt cầu:
- Câu 2:
Cho hàm số $y = f\left( x \right)$ liên tục và luôn âm trên đoạn $\left[ {a;b} \right]$. Diện tích hình phẳng giới hạn bởi đồ thị hàm số $y = f\left( x \right)$, hai đường thẳng $x = a,x = b$ và trục hoành được tính bởi công thức:
- Câu 3:
Trong không gian với hệ tọa độ Oxyz, cho $A\left( {3; - 2;4} \right),\,B\left( {3;1;2} \right)$. Tọa độ vectơ $\overrightarrow {BA} $ là:
- Câu 4:
Công thức nào sau đây là sai?
- Câu 5:
Nguyên hàm của hàm số $f\left( x \right) = \sin \left( {x + \pi } \right)$ là:
- Câu 6:
Nguyên hàm của hàm số $f\left( x \right) = {x^2} - 3x + \frac{1}{x}$ là:
- Câu 7:
Cho số phức $z = a + bi,\left( {a,b \in \mathbb{R}} \right)$. Số phức ${z^2}$ có phần thực là:
- Câu 8:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng $\left( P \right):2x + 3y - z + 4 = 0$. Biết $\overrightarrow n = \left( {1;b;c} \right)$ là một vectơ pháp tuyến của $\left( P \right)$. Tính tổng $T = b + c$ bằng:
- Câu 9:
Kí hiệu ${z_0}$ là nghiệm phức có phần ảo dương của phương trình $4{z^2} - 16z + 17 = 0$. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức $w = i{z_0}$?
- Câu 10:
Cho số phức $z = a + bi,\left( {a,b \in \mathbb{R}} \right),\,z \ne 0$, số phức $\frac{1}{z}$ có phần ảo là:
- Câu 11:
Trong không gian với hệ tọa độ Oxyz, cho điểm $A\left( {1; - 2;4} \right)$. Hình chiếu vuông góc của A trên trục Oy là điểm nào dưới đây?
- Câu 12:
Cặp số thực $\left( {x;y} \right)$ thỏa mãn $2 + \left( {5 - y} \right)i = \left( {x - 1} \right) + 5i,$ ($i$ là đơn vị ảo) là:
- Câu 13:
Cho ${z_1},{z_2}$ là hai số phức tùy ý, khẳng định nào sau đây sai?
- Câu 14:
Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình của một mặt phẳng song song với trục Oz?
- Câu 15:
Trong không gian với hệ tọa độ Oxyz, cho điểm $M\left( {2; - 3;5} \right)$ và đường thẳng $d:\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 - t\\z = 4 + t\end{array} \right.$. Đường thẳng $\Delta $ đi qua điểm M và song song với d có phương trình là:
- Câu 16:
Tích phân $I = \int\limits_0^1 {\frac{1}{{2x + 1}}dx} $ bằng:
- Câu 17:
Trong không gian với hệ tọa độ Oxyz, cho $A\left( {4;0;2} \right),B\left( {0;2;0} \right)$, $M$ là điểm thỏa mãn $\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 $, tọa độ của điểm $M$ là:
- Câu 18:
Trong không gian với hệ tọa độ Oxyz, cho $\left( S \right)$ là mặt cầu có tâm $I\left( {2;1; - 1} \right)$ và tiếp xúc mặt phẳng $\left( \alpha \right):2x - 2y - z + 3 = 0$
- Câu 19:
Cho số phức z là số thuần ảo khác 0, mệnh đề nào sau đây đúng?
- Câu 20:
Môđun của số phức $z = bi,\left( {b \in \mathbb{R}} \right)$ là:
- Câu 21:
Tìm số phức liên hợp của số phức $z = 3i + 1$?
- Câu 22:
Nguyên hàm của hàm số $f\left( x \right) = {e^{3x}}{.3^x}$ là:
- Câu 23:
Trong không gian với hệ tọa độ Oxyz, cho vectơ $\overrightarrow u = \left( {1;2;{{\log }_2}3} \right),\overrightarrow v = \left( {2; - 2;{{\log }_3}2} \right)$. Khi đó, tích vô hướng $\overrightarrow u .\overrightarrow v $ được xác định:
- Câu 24:
Tích phân $\int\limits_0^2 {2019{{\left( {x + 1} \right)}^{2018}}dx} $ bằng:
- Câu 25:
Trong không gian với hệ tọa độ Oxyz, cho điểm $M\left( {1; - 2; - 3} \right)$. Tọa độ điểm M’ đối xứng với điểm M qua mặt phẳng $\left( {Oxz} \right)$ là:
- Câu 26:
Diện tích hình phẳng giới hạn bởi đồ thị của các hàm số $y = \left| {\ln x} \right|,y = 1$ được tính bởi công thức:
- Câu 27:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng $\left( \alpha \right): - x + {m^2}y + mz + 1 = 0$ và đường thẳng $d:\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{{ - 1}}$. Tìm tất cả các giá trị thực của tham số $m$ để $d$ song song với $\left( \alpha \right)$.
- Câu 28:
Cho $y = f\left( x \right),y = g\left( x \right)$ là những hàm số liên tục trên đoạn $\left[ {a;b} \right]$ và $f\left( x \right) > g\left( x \right) > 0,\,\forall x \in \left[ {a;b} \right]$. Thể tích của khối tròn xoay được sinh bởi hình phẳng giới hạn bởi đồ thị hai hàm số $y = f\left( x \right),y = g\left( x \right)$ và hai đường thẳng $x = a,x = b$ khi quay quanh trục hoành được xác định bởi công thức:
- Câu 29:
Cho $\int\limits_0^8 {f\left( x \right)dx} = 16$. Tính $I = \int\limits_0^2 {f\left( {4x} \right)dx} $?
- Câu 30:
Tìm phần thực của số phức z biết $z + \frac{{{{\left| z \right|}^2}}}{z} = 10$.
- Câu 31:
Cho hai số phức ${z_1},{z_2}$ tùy ý và $z = {z_1}\overline {{z_2}} + \overline {{z_1}} {z_2}$. Giả sử M là điểm biểu diễn của z trên hệ trục tọa độ Oxy. Khẳng định nào sau đây đúng?
- Câu 32:
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d và d’ có phương trình $d:\frac{x}{1} = \frac{y}{1} = \frac{z}{1}$, $d':\frac{x}{1} = \frac{{y - 1}}{1} = \frac{{z + 1}}{1}$. Khi đó khoảng cách giữa d và d’ bằng:
- Câu 33:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng $\left( P \right)$ qua $A\left( {1;2; - 1} \right)$ và chứa đường thẳng $d:\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{z}{{ - 2}}$ có phương trình là:
- Câu 34:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng $\left( P \right)$ qua $A\left( {a;0;0} \right)$, $B\left( {0;b;0} \right)$, $C\left( {0;0;c} \right)$ với $a,b,c$ là các số dương thỏa mãn $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 2$. Hỏi mặt phẳng $\left( P \right)$ luôn đi qua điểm nào sau đây?
- Câu 35:
Trong không gian với hệ tọa độ Oxyz, góc giữa hai mặt phẳng có phương trình $x = 0$ và $ - x + y + 3 = 0$ có số đo bằng:
- Câu 36:
Cho hai số phức ${z_1},{z_2}$ thỏa mãn $\left| {{z_1} - {z_2}} \right| = \left| {{z_1}} \right| = \left| {{z_2}} \right| = 2$. Tính $\left| {{z_1} + {z_2}} \right|$?
- Câu 37:
Cho hàm số $y = f\left( x \right)$ là hàm số chẵn, liên tục trên đoạn $\left[ { - 2;2} \right]$ và $\int\limits_{ - 2}^2 {\frac{{f\left( x \right)}}{{{{2018}^x} + 1}}dx = 2020} $. Khi đó, tích phân $\int\limits_0^2 {\left( {1 + f\left( x \right)} \right)dx} $ bằng:
- Câu 38:
Trong không gian với hệ tọa độ Oxyz, cho $A\left( { - 3;0;0} \right),\,B\left( {0;0;3} \right),\,C\left( {0; - 3;0} \right)$ và mặt phẳng$\left( P \right):x + y + z - 3 = 0$. Gọi $M\left( {a;b;c} \right) \in \left( P \right)$ sao cho $\left| {\overrightarrow {MA} + \overrightarrow {MB} - \overrightarrow {MC} } \right|$ nhỏ nhất. Khi đó, tổng $T = a + 10b + 100c$ bằng:
- Câu 39:
Cho z là một số phức (không phải là số thực) sao cho số phức $\frac{1}{{\left| z \right| - z}}$ có phần thực bằng 4. Tính $\left| z \right|$?
- Câu 40:
Trong không gian với hệ tọa độ Oxyz, tập hợp những điểm biểu diễn số phức z thỏa mãn $\left| {z - 1} \right| + \left| {z + 2i} \right| = 2\sqrt 2 $ là:
- Câu 41:
Cho tứ diện $ABCD$, trên các cạnh $BC,\,\,BD,\,\,AC$ lần lượt lấy các điểm $M,\,\,N,\,\,P$ sao cho $BC = 3BM,\,\,BD = \dfrac{3}{2}BN,\,\,AC = 2AP$. Mặt phẳng $\left( {MNP} \right)$ chia khối tứ diện $ABCD$ thành 2 phần có thể tích là ${V_1},\,\,{V_2}$. Tính tỉ số $\dfrac{{{V_1}}}{{{V_2}}}$
- Câu 42:
Có bao nhiêu giá trị nguyên của tham số $m \in \left[ { - 10;10} \right]$ để bất phương trình sau nghiệm đúng $\forall x \in \mathbb{R}$: ${\left( {6 + 2\sqrt 7 } \right)^x} + \left( {2 - m} \right){\left( {3 - \sqrt 7 } \right)^x} - \left( {m + 1} \right){2^x} \ge 0$?
- Câu 43:
Cho lăng trụ đứng $ABC.A'B'C'$ có diện tích tam giác $ABC$ bằng $2\sqrt 3 $. Gọi $M,\,\,N,\,\,P$ lần lượt thuộc các cạnh $AA',\,\,BB',\,\,CC'$, diện tích tam giác $MNP$ bằng 4. Tính góc giữa hai mặt phẳng $\left( {ABC} \right)$ và $\left( {MNP} \right)$.
- Câu 44:
Cho hàm số $f\left( x \right),\,\,f\left( { - x} \right)$ liên tục trên $\mathbb{R}$ và thỏa mãn $2f\left( x \right) + 3f\left( { - x} \right) = \dfrac{1}{{4 + {x^2}}}$. Tính $I = \int\limits_{ - 2}^2 {f\left( x \right)dx} $.
- Câu 45:
Cho $\int\limits_1^2 {f\left( x \right)dx} = 2$. Tính $\int\limits_1^4 {\dfrac{{f\left( {\sqrt x } \right)}}{{\sqrt x }}dx} $ bằng :
- Câu 46:
Cho các số thực dương $a,\,\,b$ với $a \ne 1$ và ${\log _a}b > 0$. Khẳng định nào sau đây là đúng ?
- Câu 47:
Cho hàm số $y = f\left( x \right)$ có đạo hàm $f'\left( x \right) = {x^2}\left( {x - 1} \right){\left( {{x^2} - 1} \right)^3},\,\,\forall x \in \mathbb{R}$. Số điểm cực trị của hàm số đã cho là:
- Câu 48:
Cho hai tích phân $\int\limits_{ - 2}^5 {f\left( x \right)dx} = 8$ và $\int\limits_5^{ - 2} {g\left( x \right)dx} = 3$. Tính $I = \int\limits_{ - 2}^5 {\left[ {f\left( x \right) - 4g\left( x \right) - 1} \right]dx} $ ?
- Câu 49:
Cho hình chóp đều $S.ABCD$ có đáy là hình vuông $ABCD$ tâm $O$ cạnh $2a$, cạnh bên $SA = a\sqrt 5 $. Khoảng cách giữa $BD$ và $SC$ là :
- Câu 50:
Rút gọn biểu thức $P = \frac{{{{\left( {{a^{\sqrt 3 - 1}}} \right)}^{\sqrt 3 + 1}}}}{{{a^{4 - \sqrt 5 }}.{a^{\sqrt 5 - 2}}}}$ (với $a > 0$ và $a \ne 1$ )
- Câu 51:
Cho hàm số $y = f\left( x \right)$ liên tục trên $\mathbb{R}$ và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị thực của tham số $m$ để phương trình $f\left( {\cos x} \right) = m$ có 2 nghiệm phân biệt thuộc $\left( {0;\dfrac{{3\pi }}{2}} \right]$ là:
- Câu 52:
Cho hàm số $y = f\left( x \right)$ bảng biến thiên như sau:
Phát biểu nào sau đây đúng?
- Câu 53:
Trong không gian với hệ tọa độ $Oxyz$ cho ba điểm $A\left( {1;0;0} \right);\,\,B\left( {0;2;0} \right);\,\,C\left( {0;0;3} \right)$. Thể tích tứ diện $OABC$ bằng:
- Câu 54:
Gọi $m$ và $M$ lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số $y = x - \sqrt {4 - {x^2}} $. Khi đó $M - m$ bằng:
- Câu 55:
Cho mặt phẳng $\left( P \right)$ đi qua các điểm $A\left( { - 2;0;0} \right);\,\,B\left( {0;3;0} \right);\,\,C\left( {0;0; - 3} \right)$. Mặt phẳng $\left( P \right)$ vuông góc với mặt phẳng nào trong các mặt phẳng sau:
- Câu 56:
Trong không gian với hệ tọa độ $Oxyz$ cho bốn điểm $A\left( {1;0;2} \right),\,\,\,B\left( { - 2;1;3} \right),\,\,C\left( {3;2;4} \right),$ $D\left( {6;9; - 5} \right)$. Tọa độ trọng tâm của tứ diện $ABCD$ là:
- Câu 57:
Tập xác định của hàm số ${\left( {{x^2} - 3x + 2} \right)^\pi }$ là:
- Câu 58:
Trong không gian $Oxyz$, cho mặt cầu có phương trình ${x^2} + {y^2} + {z^2} - 2x + 4y - 6z + 9 = 0$. Tọa độ tâm $I$ và bán kính $R$ của mặt cầu là:
- Câu 59:
Tích phân $\int\limits_0^2 {\dfrac{x}{{{x^2} + 3}}dx} $ bằng:
- Câu 60:
Tìm mệnh đề sai trong các mênh đề sau:
- Câu 61:
Cho hàm số $y = f\left( x \right)$ xác định, liên tục trên $\mathbb{R}$ vàc cos bảng biến thiên như sau:
Tìm tất cả các giá trị thực của tham số m để phương trình $f\left( x \right) - 1 = m$ có đúng 2 nghiệm.
- Câu 62:
Trong không gian với hệ trục tọa độ $Oxyz$, cho $\overrightarrow a = - \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k $. Tọa độ của vectơ $\overrightarrow a $ là:
- Câu 63:
Cho hàm số $f\left( x \right)$ có $f\left( 2 \right) = f\left( { - 2} \right) = 0$ và có bảng xét dấu của đạo hàm như sau:
Hàm số $y = {\left( {f\left( {3 - x} \right)} \right)^2}$ nghịch biến trên khoảng nào dưới đây?
- Câu 64:
Tính khoảng cách giữa các tiếp tuyến của đồ thị hàm $f\left( x \right) = {x^3} - 3x + 1\,\,\left( C \right)$ tại cực trị của $\left( C \right)$.
- Câu 65:
Khối trụ tròn xoay có đường kính là $2a$, chiều cao là $h = 2a$ có thể tích là:
- Câu 66:
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau:
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:
- Câu 67:
Gọi $l,\,\,h,\,\,r$ lần lượt là độ dài đường sinh, chiều cao và bán kính mặt đáy của hình nón. Diệnt ích xung quanh ${S_{xq}}$ của hình nón là:
- Câu 68:
Cho hàm số $y = f\left( x \right)$ có $f'\left( x \right)$ liên tục trên $\left[ {0;2} \right]$ và $f\left( 2 \right) = 16$; $\int\limits_0^2 {f\left( x \right)dx} = 4$. Tính $I = \int\limits_0^1 {xf'\left( {2x} \right)dx} $
- Câu 69:
Cho khối hộp chữ nhật $ABCD.A'B'C'D'$ có $AB = a,\,\,AD = b,\,AA' = c$. Thể tích khối hộp chữ nhật $ABCD.A'B'C'D'$ bằng bao nhiêu?
- Câu 70:
Đặt $a = {\log _2}5,\,\,b = {\log _3}5$. Hãy biểu diễn ${\log _6}5$ theo $a$ và $b$.
- Câu 71:
Cho hàm số $y = f\left( x \right),\,\,y = g\left( x \right)$ liên tục trên $\left[ {a;b} \right]$ và số thực $k$ tùy ý. Trong các khẳng định sau, khẳng định nào sai?
- Câu 72:
Chọn ngẫu nhiên một số tự nhiên gồm 7 chữ số khác nhau có dạng $\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}{a_7}} $. Tính xác suấ để số được chọn luôn có mặt chữ số 2 và thỏa mãn ${a_1} < {a_2} < {a_3} < {a_4} > {a_5} > {a_6} > {a_7}$.
- Câu 73:
Cho $f\left( x \right)$ là hàm số chẵn, liên tục trên đoạn $\left[ { - 1;1} \right]$ và $\int\limits_{ - 1}^1 {f\left( x \right)dx} = 4$. Kết quả $I = \int\limits_{ - 1}^1 {\dfrac{{f\left( x \right)}}{{1 + {e^x}}}dx} $ bằng:
- Câu 74:
Cho khối lăng trụ $ABC.A'B'C'$ có thể tích bằng $V$. Tính thể tích khối tứ diện $ABCB'C'$.
- Câu 75:
Một khối gỗ hình lập phương có thể tích ${V_1}$. Một người thợ mộc muốn gọt giũa khối gỗ đó thành một khối trụ có thể tích là ${V_2}$. Tính tỉ số lớn nhất $k = \dfrac{{{V_2}}}{{{V_1}}}$?
- Câu 76:
Cho hàm số $y = f\left( x \right)$ có bảng biế thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
- Câu 77:
Tính $\lim \dfrac{{\sqrt {4{n^2} + 1} - \sqrt {n + 2} }}{{2n - 3}}$ bằng:
- Câu 78:
Tìm tập nghiệm của bất phương trình ${\log _{\frac{2}{5}}}\left( {x - 4} \right) + 1 > 0$.
- Câu 79:
Có bao nhiêu số tự nhiên có bốn chữ số khác nhau được tạo thành từ các chữ số của tập $X = \left\{ {1;3;5;8;9} \right\}$.
- Câu 80:
Cho cấp số nhân $\left( {{u_n}} \right)$ có tổng $n$ số hạng đầu tiên là ${S_n} = {6^n} - 1$. Tìm số hạng thứ năm của cấp số cộng đã cho
- Câu 81:
Trong không gian với hệ tọa độ Oxyz, cho ba điểm $A\left( {0; - 2; - 1} \right);\,\,B\left( { - 2; - 4;3} \right);\,\,C\left( {1;3; - 1} \right)$. Tìm điểm $M \in \left( {Oxy} \right)$ sao cho $\left| {\overrightarrow {MA} + \overrightarrow {MB} + 3\overrightarrow {MC} } \right|$ đạt giá trị nhỏ nhất.
- Câu 82:
Tìm tất cả các giá trị thực của m để hàm số $y = \dfrac{1}{3}{x^3} - \left( {m - 1} \right){x^2} - 4mx$ đồng biến trên đoạn $\left[ {1;4} \right]$.
- Câu 83:
Trong không gian với hệ tọa độ Oxyz, cho các vectơ $\overrightarrow a = \left( {2;m - 1;3} \right);\,\,\overrightarrow b = \left( {1;3; - 2n} \right)$. Tìm $m,n$ để các vectơ $\overrightarrow a ,\,\,\overrightarrow b $ cùng hướng.
- Câu 84:
Trong các hàm số sau, hàm số nào nghịch biến trên tập số thực $\mathbb{R}$?
- Câu 85:
Mệnh đề nào sau đây Sai?
- Câu 86:
Cho hình hộp chữ nhật $ABCD.A'B'C'D'$ có $AB = x,\,AD = 1.$ Biết rằng góc giữa đường thẳng $A'C$ và mặt phẳng $\left( {ABB'A'} \right)$ bằng ${30^0}.$ Tìm giá trị lớn nhất ${V_{\max }}$ của thể tích khối hộp $ABCD.A'B'C'D'$
- Câu 87:
Cho biết ${\left( {x - 2} \right)^{\frac{{ - 1}}{3}}} > {\left( {x - 2} \right)^{\frac{{ - 1}}{6}}},$ khẳng định nào sau đây Đúng?
- Câu 88:
Trong tất cả các hình thang cân có cạnh bên bằng $2$ và cạnh đáy nhỏ bằng $4$ , tính chu vi $P$ của hình thang có diện tích lớn nhất.
- Câu 89:
Cho ${\log _8}\left| x \right| + {\log _4}{y^2} = 5$ và ${\log _8}\left| y \right| + {\log _4}{x^2} = 7.$ Tìm giá trị của biểu thức $P = \left| x \right| - \left| y \right|.$
- Câu 90:
Trải mặt xung quanh của một hình nón lên một mặt phẳng ta được hình quạt (xem hình bên dưới) là phần của hình tròn có bán kính bằng $3cm.$ Bán kính đáy $r$ của hình nón ban đầu gần nhất với số nào dưới đây?