Cho hàm số y = (x^3) + (x^2) + ( (m - 3) )x + 1 - m,,( 1 ). Đường thẳng ( d ):y = x - 1 cắt đồ thị ( 1 ) tại ba điểm phân biệt A( (1;0) ),B,C. Kẻ ( Delta ) bot ( d ) tại B, điểm E( (1; - 2) ) in ( Delta ). Tìm m biết EC = sqrt (10) .
【C19】Lưu lạiCho hàm số $y = {x^3} + {x^2} + \left( {m - 3} \right)x + 1 - m\,\,\left( 1 \right)$. Đường thẳng $\left( d \right):y = x - 1$ cắt đồ thị $\left( 1 \right)$ tại ba điểm phân biệt $A\left( {1;0} \right),B,C$. Kẻ $\left( \Delta \right) \bot \left( d \right)$ tại $B$, điểm $E\left( {1; - 2} \right) \in \left( \Delta \right)$. Tìm $m$ biết $EC = \sqrt {10} $.
Đáp án:

Đăng nhập hoặc đăng ký để bình luận.
Chưa có bình luận
Hãy để lại bình luận đầu tiên nhé!